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Note 

Acceleration of the Convergence 
in Viscous Flow Computations 

In their paper [ 11, Gupta and Manohar thoroughly studied the influence of approx- 
imating the boundary conditions upon the accuracy of finite difference methods 
approaching the two-dimensional Navier-Stokes equations. These equations are 
written in stream function-vorticity formulation and the resulting system consists of 
two coupled, non-linear elliptic partial derivative equations (PDE). 

The usual iterative procedure is employed: it requires a damping parameter for the 
calculation of the boundary values of the vorticity. In fact, this algorithm is of the 
relaxation type for both finite difference equations approaching the PDE, with two 
relaxation factors wi , wI?, one of which is equal to unity in [ 11. Previous work on the 
biharmonic problem has shown that the best rate of convergence is obtained when 
o1 = o2 [2,5]. The numerical experiments described in this note allow this assertion 
to be verified for the finite difference approximations of Eqs. (l), (2). 

The differential problem is written for a square cavity: 

AI/I=--i-2 

ly = 0, g = 0, when x=Oor 1, 

ly = 0,3fL = 0, 
dY 

when y = 0, 

,=o+, when y= 1. 

The algorithm used is the following: 

A, fib+ 1) = -Q’Vd 
on (D), 

v (m+1) qjyp+l) + (1 -o,) v(m) 

f=p + 1) q-@(m), po) 

fi(m+l) = 02fi(m+l) + (1 _ 02) fp) on (0 

(1) 

(2) 

(3) 

(4) 
(5) 

(6) 

(7) 

L&p+l) = 0 on (D). (8) 
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A,,, L, are the finite-difference operators associated ,with A and L. f(@"', I#~') is 
one of the boundary approximations detailed in [I]. 

It should be noted that the boundary conditions are explicitly calculated and 
damped by w2, in the usual way. a(“‘+ ‘) is then damped in the whole domain when 
Eq. (8) is solved. But (6) and (7) may be included in (8) and (6), (7), (8) replaced by 
(9): 

fpfl) =W2ptl) + (1 ~Lo*)fp) 
on (D). (9) 

Thus, the boundary conditions are implicitly taken into account. 
The optimum rate of convergence of the above algorithm is obtained when [2], 

2 
01 = w2 = 1 + (1 +/q/2 ’ (10) 

p being the growth factor’ of the outer iterative scheme (index (m) in (4)-(8)); p is 
obtained with a small number of iterations when w, = w2 = 1. The values of p given 
in [ 1 ] are quite correct, so we obtain w, , o2 in Eq. (10) with these values. 

The algorithm introduced by Smith [4] and utilized in [l] has a rate of 
convergence weaker than (4)-(8) when wl, w2 are given by (10). When the Reynolds 
number is large, the number of outer iterations strongly increases, each of them 
corresponding to an inner resolution for I#~’ ‘) and QCm’ ‘) (by direct or iterative 
methods). To limit the increase in computing time, Gupta and Manohar suggest 
choosing larger values of p and q in the calculation of Q on (Q, i.e., to obtain Q on 
the boundary using values at points not immediately next to the boundary. However, 
this choice leads to less accurate numerical results in the neighbourhood of the cavity 
corners and even for central points-see w,,,,, , Table III in [ 11. 

For the same computing cost, the above algorithm (4)-(8) allows smaller values of 
p and q to be chosen thus improving the accuracy. 

In Table I, we simply report some significant values of the number of outer 
iterations for the best-known boundary formulae: 

Thorn’s formula (p = 1, q = 0), Jensen’s formula (p = 2, q = l), the formula with 
(p = 2, q = 0), Woods’ formula. 

This table should be compared with Table II in [ 11. Note that in Eq. (8) we use 
central differencing for R < 100 and upstream differencing when R = 500. 

The mesh size used in the numerical experiments is h = 0.05. 
We would like to make some remarks concerning the calculation of I#~+‘) and 

fitrn’ I). For biharmonic problems direct methods seem to be preferable, but in our 
problem, the matrix corresponding to L, changes at every iteration, therefore it is 
efficient to choose an iterative procedure: the point successive overrelaxation method 
for instance; but the choice of the relaxation factor is then difficult for (8), when R is 
large [3]: a strong under-relaxation is often necessary and the convergence is very 
slow. 
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TABLE I 

Relaxation Factors and Number of Iterations N 

Boundary 
formula WIrW2 

Reynolds number R 

10 50 100 500 

p= l,q=O 0.46 22 32 43 71 N 

p=2,9=0 0.58 15 20 26 43 N 

p=2,9= 1 0.39 29 40 56 88 N 

Woods 0.45 21 34 41 76 N 

However, it is not necessary to reach convergence of the iterative procedure: with a 
few iterations, 10 for instance, we obtain q(*+r), fiCrn+‘) which approximate to 
,/m+ I), fJ(m+l,. Th’ is does not modify the convergence of the algorithm and the 
number of outer iterations. So it is probably possible to suggest a global iterative 
procedure which leaves out the outer iterations and decreases computing time. 
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